Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$B_{\rm eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	Occupancy	r	ν	7	Bea
Ni	1.0	0.24397 (14)	0.80566 (7)	0.22878 (5)	2.82 (4)
cia	1.0	0.7905 (3)	0.65783 (19)	0.18758 (17)	4.80 (11)
Cl(2)	1.0	0.7010 (4)	0.0539 (2)	0.07441 (17)	5.17 (13)
O(1)	1.0	0.7069 (12)	0.7291 (6)	0.2195 (10)	13.8 (10)
$\tilde{0}(2)$	1.0	0.6908 (13)	0.5845 (6)	0.1929 (10)	12.5 (9)
O(3)	1.0	0.817 (2)	0.6730 (17)	0.1146 (7)	21.7 (17)
O(4)	1.0	0.9302 (11)	0.6422 (7)	0.2275 (7)	9.4 (6)
0(5)	0.85	0.743 (2)	-0.0367 (7)	0.0833 (9)	11.1 (10)
0(5')	0.15	0.692 (6)	0.007 (3)	0.149 (3)	4.1 (9)
0(6)	0.70	0.713 (4)	0.0727 (16)	-0.0015(9)	14.7 (18)
0(6')	0.30	0.596 (4)	0.028 (3)	0.0201 (19)	9 (2)
0(7)	0.70	0.567 (3)	0.095 (2)	0.0970 (17)	16.0 (19)
O(7')	0.30	0.600 (6)	0.044 (3)	0.137 (3)	8.3 (11)
O(8)	1.0	0.8190 (14)	0.1081 (8)	0.1101 (9)	11.8 (8)
N(1)	1.0	0.2128 (9)	0.8053 (5)	0.3437 (4)	3.7 (3)
N(2)	1.0	0.1431 (9)	0.9221 (5)	0.2227 (5)	3.6 (3)
N(3)	1.0	0.2691 (9)	0.8115 (6)	0.1137 (4)	3.6 (3)
N(4)	1.0	0.3555 (9)	0.6915 (5)	0.2345 (4)	4.3 (3)
C(1)	1.0	0.3018 (19)	0.8563 (10)	0.4795 (6)	7.9 (8)
C(2)	1.0	0.31396 (14)	0.8673 (8)	0.3909 (6)	4.8 (5)
C(3)	1.0	0.4803 (18)	0.8570 (12)	0.3627 (9)	7.8 (9)
C(4)	1.0	0.0387 (12)	0.8128 (8)	0.3627 (6)	4.2 (4)
C(5)	1.0	-0.0364 (12)	0.8984 (8)	0.3370 (7)	4.9 (5)
C(6)	1.0	-0.0256 (12)	0.9166 (7)	0.2476 (6)	4.3 (4)
C(7)	1.0	0.1594 (14)	0.9618 (7)	0.1409 (6)	5.0 (5)
C(8)	1.0	0.1531 (15)	0.8790 (9)	0.0846 (6)	5.6 (6)
C(9)	1.0	0.4282 (15)	0.8428 (10)	0.0963 (7)	5.9 (6)
C(10)	1.0	0.2395 (18)	0.7258 (8)	0.0700 (6)	6.1 (6)
C(11)	1.0	0.3341 (15)	0.6454 (8)	0.0947 (7)	5.8 (6)
C(12)	1.0	0.3070 (13)	0.6176 (7)	0.1765 (8)	5.3 (5)

Table 2. Selected geometric parameters (Å, °)

	0	1	
Ni—N(1)	1.951 (6)	N(3)—C(10)	1.48 (1)
Ni-N(2)	1.915 (7)	N(4)C(12)	1.52 (1)
Ni-N(3)	1.951 (6)	C(1) - C(2)	1.50 (2)
Ni—N(4)	1.927 (8)	C(2)—C(3)	1.50 (2)
N(1)C(2)	1.48 (1)	C(4) - C(5)	1.47 (2)
N(1)C(4)	1.52 (1)	C(5)—C(6)	1.53 (2)
N(2)-C(6)	1.49 (1)	C(7)—C(8)	1.54 (2)
N(2) - C(7)	1.50(1)	C(10)—C(11)	1.49 (2)
N(3)—C(8)	1.48 (2)	C(11)-C(12)	1.45 (2)
N(3)-C(9)	1.46 (2)		
N(1)—Ni—N(2)	89.7 (3)	C(8)-N(3)-C(9)	109.9 (9)
N(1) - Ni - N(3)	177.2 (3)	C(8) - N(3) - C(10)	107.0 (8)
N(1) - Ni - N(4)	90.8 (3)	C(9)—N(3)—C(10)	109.0 (9)
N(2)-Ni-N(3)	87.5 (3)	Ni-N(4)-C(12)	117.1 (6)
N(2)—Ni—N(4)	177.1 (3)	N(1) - C(2) - C(1)	115 (1)
N(3)—Ni—N(4)	92.0 (3)	N(1) - C(2) - C(3)	108.3 (9)
Ni - N(1) - C(2)	116.8 (6)	C(1) - C(2) - C(3)	112(1)
Ni - N(1) - C(4)	109.9 (5)	N(1)-C(4)-C(5)	114.9 (8)
C(2) - N(1) - C(4)	114.0 (8)	C(4) - C(5) - C(6)	114.3 (9)
Ni-N(2)-C(6)	111.4 (6)	N(2)—C(6)—C(5)	110.0 (8)
Ni - N(2) - C(7)	110.7 (6)	N(2) - C(7) - C(8)	104.8 (8)
C(6) - N(2) - C(7)	111.5 (7)	N(3)—C(8)—C(7)	107.5 (8)
Ni—N(3)—C(8)	106.6 (6)	N(3) - C(10) - C(11)	116.4 (9)
Ni—N(3)—C(9)	108.3 (6)	C(10) - C(11) - C(12)	113.7 (9)
N - N(3) - C(10)	115.9 (6)	N(4) - C(12) - C(11)	111.4 (8)

The structure was solved by direct and Fourier methods and refined by full-matrix least-squares techniques. H atoms were located by difference Fourier methods and theoretical calculation. *NRCVAX* (Gabe, Le Page, White & Lee, 1987) was used for all calculations.

The authors thank the National Science Council for support under grants NSC82-0208-M007-119 and NSC82-0208-M007-32. They are also indebted to Ms Shu-Fang Tung for collecting the X-ray diffraction data.

References

- Gabe, E. J., Le Page, Y., White, P. S. & Lee, F. L. (1986). Acta Cryst. A43, C-294.
- Hinz, F. P. & Margerum, D. W. (1974). Inorg. Chem. 13, 2941-2949.
- Lu, T.-H., Chung, C.-S. & Ashida, T. (1991). J. Chin. Chem. Soc. (Taipei), 38, 147-153.
- Lu, T.-H., Shan, H.-C., Chao, M.-S. & Chung, C.-S. (1987). Acta Cryst. C43, 207-209.
- North, A. C. T., Phillips, D. C. & Mathews, F. W. (1968). Acta Cryst. A24, 351-359.

Acta Cryst. (1994). C50, 518-520

[N,N'-Bis(3-aminopropyl)-*trans*-1,2-cyclohexanediamine-N,N',N'',N''']di(perchlorato-O)copper(II)

TAHIR H. TAHIROV AND TIAN-HUEY LU*

Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300

KELUN SHU AND CHUNG-SUN CHUNG

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300

(Received 19 April 1993; accepted 20 September 1993)

Abstract

The Cu^{II} ion of the title complex, $[Cu(ClO_4)_2-(C_{12}H_{28}N_4)]$, is six-coordinated with four N atoms of the tetradentate ligand on the equatorial plane and two perchlorato O atoms in axial positions. The two asymmetric donor N atoms have the same R or S configuration. The two terminal six-membered chelate rings are in stable chair forms and the central five-membered chelate ring is in a stable gauche form. The cyclohexane ring on the central chelate ring is in a stable chair form. The hydrogen bonds between the NH and NH₂ groups and the perchlorate O atoms help stabilize the crystal structure.

Comment

We have reported previously the crystal structure of [N,N'-bis(3-aminopropyl)-1,2-ethanediamine]per-

chloratocopper(II) perchlorate hemihydrate, $[Cu(ClO_4)(C_8H_{22}N_4)]ClO_4.0.5H_2O$ (Lee, Lee, Hong, Hsieh, Wu & Chung, 1986). In order to study the steric effect of the cyclohexane ring attached to the central five-membered chelating ring on the structure of the copper(II) complex, we have prepared and studied the structure of the title complex (I).

trans-1,2-Cyclohexanediamine (11.4 g in 100 ml propanol) was added slowly to an ethanol solution of acrylamide (14.2 g in 100 ml ethanol). The resulting solution was refluxed for 3 h and then placed in a refrigerator for one week. White crystals of N,N'-bis(β -carbamoylethyl)-*trans*-1,2-diaminocyclohexane precipitated slowly from the solution. These white crystals were filtered off and dried in a vacuum. The product was added to an ice-cooled dry tetrahydro-furan solution of excess LiAlH₄ and refluxed for 24 h. Excess water and a solution of NaOH were added to this solution whereupon white solid Al(OH)₃ was rapidly deposited and filtered off. The filtrate was evaporated to dryness, and the ligand, N,N'-bis(3-aminopropyl)-*trans*-1,2-cyclohexanedi-

amine, was distilled at *ca* 426 K under vacuum (3.8 mm Hg). A solution of $Cu(ClO_4)_2.6H_2O$ (3.7 g, 0.01 mol) in methanol (80 ml) was added dropwise to a solution of the ligand (2.28 g, 0.01 mol) in ethanol (80 ml). The solution changed colour rapidly to reddish blue and was stirred for 3 h until a purple solid formed. The single crystal was obtained by slow evaporation of an aqueous solution at room temperature.

The coordination geometry about the Cu^{II} ion is tetragonally distorted octahedral with four N donor atoms of the tetradentate ligand in equatorial positions and two perchlorato O atoms in axial positions. The four equatorial N atoms are coplanar within 0.02 Å. The Cu-N distances span a narrow range, 2.018(2) to 2.046(2) Å, and are comparable to the average Cu—N distance of 2.03 (3) Å for the Cu^{II} macrocyclic complexes (Lu, Chung & Ashida, 1991). The two Cu-O(apical) distances fall within the range [2.520 (2)–2.883 (2) Å] reported by Tasker & Sklar (1975). Comparing the structure of the title complex with that of $[Cu(ClO_4)(C_8H_{22}N_4)]$ - $ClO_4.0.5H_2O$ (Lee *et al.*, 1986), we find that both complexes have the same R or S configuration of the asymmetric N atoms. In both structures, the central five-membered ring is in a stable gauche form and the

two terminal six-membered rings are in stable chair forms. Hydrogen bonds between the NH and NH_2 groups and the perchlorate O atoms help stabilize the crystal structure.

Fig. 1. A perspective view of the title molecule with the atomnumbering scheme, excluding the H atoms attached to the C atoms. Displacements from the best plane formed by the four N atoms coordinated to the Cu^{II} ion are also indicated.

Experimental

Crystal data

$[Cu(ClO_4)_2(C_{12}H_{28}N_4)]$	Z = 2
$M_r = 490.828$	$D_x = 1.715 \text{ Mg m}^{-3}$
Triclinic	Mo $K\alpha$ radiation
$P\overline{1}$	$\lambda = 0.7107 \text{ Å}$
a = 8.743 (2) Å	Cell parameters from 25
b = 9.656 (1) Å	reflections
c = 12.088 (3) Å	$\theta = 5.32 - 15.35^{\circ}$
$\alpha = 89.66 (2)^{\circ}$	$\mu = 1.48 \text{ mm}^{-1}$
$\beta = 77.03 \ (2)^{\circ}$	T = 298 (3) K
$\gamma = 73.28 (1)^{\circ}$	Parallelepiped
V = 950.5 (3) Å ³	0.53 \times 0.24 \times 0.19 mm

Data collection

Nonius CAD-4 diffractome-
ter4295 c
[$I \ge$
 $\theta/2\theta$ scans4295 c
[$I \ge$
 $\theta_{max} =$
 $\theta_{max} =$
h = -
 $T_{min} = 0.968, T_{max} =$
0.984k = 0
l = -5763 measured reflections3 stand
freq
inter

4295 observed reflections $[I \ge 2.5\sigma(I)]$ $R_{int} = 0.011$ $\theta_{max} = 29.9^{\circ}$ $h = -11 \rightarrow 12$ $k = 0 \rightarrow 13$ $l = -16 \rightarrow 16$ 3 standard reflections frequency: 60 min intensity variation: $\pm 0.8\%$

$[Cu(ClO_4)_2(C_{12}H_{28}N_4)]$

Refinement	
Refinement on F	$\Delta \rho_{\rm max} = 0.48 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.032	$\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.032	Extinction correction:
S = 0.53	Zachariasen (1967)
4295 reflections	Extinction coefficient:
273 parameters	0.42 (1) (length in mm)
Only H-atom U's refined	Atomic scattering factors
Unit weights applied	from International Tables
$(\Delta/\sigma)_{\rm max} = 0.004$	for X-ray Crystallography
•	(1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

	$B_{\rm eq} = (2)$	$(8\pi^2/3)\sum_i\sum_j U_{ij}d$	$a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$.	
	x	у	z	B _{eq}
Cu	0.89377 (3)	0.74711 (3)	0.25802 (2)	1.817 (9)
Cl(1)	0.78292 (7)	0.69847 (7)	-0.00307(5)	2.65 (2)
Cl(2)	0.96878 (7)	0.77767 (7)	0.54090 (5)	2.89 (2)
O(1)	0.9136 (2)	0.7143 (3)	0.04523 (17)	3.86 (10)
O(2)	0.8445 (3)	0.6551 (3)	-0.12043 (16)	4.64 (12)
O(3)	0.7139 (4)	0.5950 (3)	0.0559 (2)	6.15 (16)
O(4)	0.6601 (3)	0.8353 (3)	0.0107 (2)	5.61 (12)
O(5)	0.8632 (3)	0.8219 (3)	0.46432 (17)	4.15 (10)
O(6)	1.1357 (3)	0.7390 (3)	0.4798 (2)	6.01 (14)
O(7)	0.9337 (4)	0.6560 (3)	0.5967 (3)	6.81 (16)
O(8)	0.9342 (4)	0.8913 (4)	0.6237 (2)	6.89 (16)
N(1)	1.1335 (2)	0.6360 (2)	0.23508 (19)	2.77 (8)
N(2)	0.9379 (2)	0.94103 (19)	0.22683 (15)	1.82 (6)
N(3)	0.6518 (2)	0.86429 (19)	0.28348 (15)	1.79 (6)
N(4)	0.8347 (3)	0.5603 (2)	0.28752 (19)	2.70 (8)
C(1)	1.2550 (3)	0.6799 (3)	0.1471 (2)	2.91 (9)
C(2)	1.2429 (3)	0.8371 (3)	0.1642 (2)	2.93 (10)
C(3)	1.0890 (3)	0.9414 (3)	0.1410 (2)	2.75 (10)
C(4)	0.7869 (3)	1.0412 (2)	0.20154 (17)	1.84 (8)
C(5)	0.7830 (3)	1.2002 (3)	0.2010 (2)	2.67 (10)
C(6)	0.6209 (3)	1.2961 (3)	0.1816(2)	3.09 (11)
C(7)	0.4764 (3)	1.2768 (3)	0.2695 (3)	3.27 (11)
C(8)	0.4790 (3)	1.1184 (3)	0.2688 (2)	2.91 (10)
C(9)	0.6407 (3)	1.0210 (2)	0.28856 (17)	1.84 (7)
C(10)	0.5369 (3)	0.8264 (3)	0.3808 (2)	2.38 (9)
C(11)	0.5381 (3)	0.6697 (3)	0.3702 (2)	2.82 (10)
C(12)	0.6945 (3)	0.5610 (3)	0.3830 (2)	2.77 (10)

Table 2. Selected	l geometric	parameters	(Å,	°)
-------------------	-------------	------------	-----	----

Cu-O(1)	2.555 (2)	N(4)—C(12)	1.481 (3)
CuO(5)	2.534 (2)	C(1)—C(2)	1.503 (4)
Cu = N(1)	2.018 (2)	C(2) - C(3)	1.513 (4)
Cu-N(2)	2.035 (2)	C(4) - C(5)	1.526 (3)
Cu—N(3)	2.046 (2)	C(4)-C(9)	1.522 (3)
Cu—N(4)	2.024 (2)	C(5)—C(6)	1.521 (4)
N(1) - C(1)	1.479 (3)	C(6)—C(7)	1.513 (4)
N(2) - C(3)	1.487 (3)	C(7)-C(8)	1.523 (4)
N(2) - C(4)	1.488 (3)	C(8)-C(9)	1.525 (3)
N(3)—C(9)	1.489 (3)	C(10)—C(11)	1.516 (3)
N(3)—C(10)	1.484 (3)	C(11)-C(12)	1.504 (4)
O(1)—Cu—O(5)	170.98 (8)	Cu—N(3)—C(9)	108.2 (1)
O(1)-Cu-N(1)	90.36 (8)	Cu-N(3)-C(10)	116.4 (1)
O(1) - Cu - N(2)	87.40 (7)	C(9)-N(3)-C(10)	112.4 (2)
O(1)-Cu-N(3)	90.56 (7)	Cu - N(4) - C(12)	118.3 (2)
O(1)— Cu — $N(4)$	91.54 (8)	N(1) - C(1) - C(2)	111.8 (2)
O(5)—Cu—N(1)	93.77 (8)	C(1) - C(2) - C(3)	114.4 (2)
O(5)-Cu-N(2)	84.32 (8)	N(2) - C(3) - C(2)	112.9 (2)
O(5)CuN(3)	85.14 (7)	N(2) - C(4) - C(5)	114.5 (2)
O(5)—Cu—N(4)	96.50 (9)	N(2) - C(4) - C(9)	107.4 (2)
N(1)—Cu—N(2)	94.01 (8)	C(5)—C(4)—C(9)	110.7 (2)
N(1)CuN(3)	178.45 (8)	C(4)—C(5)—C(6)	111.2 (2)
N(1)— Cu — $N(4)$	89.63 (9)	C(5) - C(6) - C(7)	111.5 (2)
N(2)— Cu — $N(3)$	84.79 (7)	C(6)C(7)C(8)	110.3 (2)
N(2)CuN(4)	176.21 (8)	C(7)-C(8)-C(9)	111.1 (2)
N(3)—Cu—N(4)	91.59 (8)	N(3)-C(9)-C(4)	107.7 (2)

©1994 International Union of Crystallography Printed in Great Britain - all rights reserved

Cu - O(1) - Cl(1)	124.7 (1)	N(3)-C(9)-C(8)	113.0 (2)
Cu-O(5)-Cl(2)	132.3 (1)	C(4)C(9)-C(8)	111.4 (2)
Cu - N(1) - C(1)	118.7 (2)	N(3) - C(10) - C(11)	112.2 (2)
Cu - N(2) - C(3)	117.7 (1)	C(10) - C(11) - C(12)	114.5 (2)
Cu-N(2)-C(4)	107.1 (1)	N(4) - C(12) - C(11)	111.8 (2)
C(3) - N(2) - C(4)	112.5 (2)		

The structure was solved by direct and Fourier methods and refined by full-matrix least-squares techniques. H atoms were located by difference Fourier methods. NRCVAX (Gabe, Le Page, White & Lee, 1987) was used for all calculations.

The authors thank the National Science Council for support under grants NSC82-0208-M007-119 and NSC82-0208-M007-32. They are also indebted to Ms Shu-Fang Tung for collecting the X-ray diffraction data.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71649 (16 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AS1069]

References

- Gabe, E. J., Le Page, Y., White, P. S. & Lee, F. L. (1986). Acta Cryst. A43, C-294.
- Lee, T.-Y., Lee, T.-J., Hong, C.-Y., Hsieh, M.-Y., Wu, D.-T. & Chung, C.-S. (1986). Acta Cryst. C42, 1316-1319.
- Lu, T.-H., Chung, C.-S. & Ashida, T. (1991). J. Chin. Chem. Soc. (Taipei), 38, 147-153.
- Tasker, P. A. & Sklar, L. J. (1975). J. Cryst. Mol. Struct. 5, 329-344.
- Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1994). C50, 520-523

Benzenethiolato(triphenylphosphine)gold(I)

JOHN P. FACKLER JR,* RICHARD J. STAPLES, ANABEL ELDUQUE[†] AND TIFFANY GRANT[‡]

The Laboratory for Molecular Structure and Bonding, Texas A&M University, College Station, TX 77843-3255, USA

(Received 22 February 1993; accepted 31 August 1993)

Abstract

The crystal structure of $[Au(C_6H_5S)(C_{18}H_{15}P)]$ contains two Au^I centers; each Au^I is almost linearly coordinated [P-Au-S bond angles of 179.0 (1) and

† Departamento de Química Inorgánica, Universidad de Zaragoza, Spain.